New immunohistochemical method for improved myotonia and chloride channel mutation diagnostics.

نویسندگان

  • Olayinka Raheem
  • Sini Penttilä
  • Tiina Suominen
  • Mika Kaakinen
  • James Burge
  • Andrea Haworth
  • Richa Sud
  • Stephanie Schorge
  • Hannu Haapasalo
  • Satu Sandell
  • Kalervo Metsikkö
  • Michael Hanna
  • Bjarne Udd
چکیده

OBJECTIVE The objective of this study was to validate the immunohistochemical assay for the diagnosis of nondystrophic myotonia and to provide full clarification of clinical disease to patients in whom basic genetic testing has failed to do so. METHODS An immunohistochemical assay of sarcolemmal chloride channel abundance using 2 different ClC1-specific antibodies. RESULTS This method led to the identification of new mutations, to the reclassification of W118G in CLCN1 as a moderately pathogenic mutation, and to confirmation of recessive (Becker) myotonia congenita in cases when only one recessive CLCN1 mutation had been identified by genetic testing. CONCLUSIONS We have developed a robust immunohistochemical assay that can detect loss of sarcolemmal ClC-1 protein on muscle sections. This in combination with gene sequencing is a powerful approach to achieving a final diagnosis of nondystrophic myotonia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia

Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...

متن کامل

CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel

Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessi...

متن کامل

بررسی جهش در اگزون 8 ژن CLCN1 در بیماران ایرانی مبتلا به میوتونی غیر دیستروفیک

Background: Non-dystrophy myotonias (NDMs) have similar clinical signs of muscle weakness and congenital myotoniais typical example. This disease is caused by mutations in CLCN1 gene. CLCN1 gene has 23 exons and exon 8 is hotspot. Mutations in skeletal muscle chloride channel gene are associated with a group of clinically overlapping diseases by alterations in the excitability of the sarcolemma...

متن کامل

The dominant chloride channel mutant G200R causing fluctuating myotonia: clinical findings, electrophysiology, and channel pathology.

Clinical, electrophysiological, and molecular findings are reported for a family with dominant myotonia congenita in which all affected members have experienced long-term fluctuations of the symptom of myotonia. In some patients myotonia is combined with myalgia. The myotonia-causing mutation in this family is in the gene encoding the muscular chloride channel, hCIC-1, predicting the amino acid...

متن کامل

A novel N440K sodium channel mutation causes myotonia with exercise-induced weakness - exclusion of CLCN1 exon deletion/duplication by MLPA

We report a 4-generation Turkish family with 10 affected members presenting with myotonia and potassium- and exercise-induced paralytic attacks. The clinical presentation was neither typical for the chloride channel myotonias Thomsen and Becker nor for the separate sodium channel myotonia entities potassium-aggravated myotonia, paramyotonia congenita, and hyperkalemic periodic paralysis. It is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurology

دوره 79 22  شماره 

صفحات  -

تاریخ انتشار 2012